
Design Principles for Effective Knowledge
Discovery from Big Data

Edmon Begoli, James Horey

Computational Sciences & Engineering Division
Oak Ridge National Laboratory

Oak Ridge, Tennessee, USA
{begolie, horeyjl}@ornl.gov

Abstract— Big data phenomenon refers to the practice of
collection and processing of very large data sets and associated
systems and algorithms used to analyze these massive datasets.
Architectures for big data usually range across multiple machines
and clusters, and they commonly consist of multiple special
purpose sub-systems. Coupled with the knowledge discovery
process, big data movement offers many unique opportunities for
organizations to benefit (with respect to new insights, business
optimizations, etc.). However, due to the difficulty of analyzing
such large datasets, big data presents unique systems engineering
and architectural challenges. In this paper, we present three sys-
tem design principles that can inform organizations on effective
analytic and data collection processes, system organization, and
data dissemination practices. The principles presented derive
from our own research and development experiences with big
data problems from various federal agencies, and we illustrate
each principle with our own experiences and recommendations.

I. INTRODUCTION

Knowledge Discovery from Data (KDD) [1] refers to a set
of activities designed to extract new knowledge from complex
datasets. The KDD process is often interdisciplinary and
spans computer science, statistics, visualization, and domain
expertise (Figure 1). In recent years, large quantities of data
have become increasingly available at significant volumes
(petabytes or more). Such data have many sources including
online activities (social networking, social media), telecommu-
nications (mobile computing,call statistics), scientific activities
(simulations, experiments, environmental sensors), and the
collation of traditional sources (forms, surveys). Consequently
KDD has become strategically important for large business
enterprises, government organizations, and research institu-
tions. However, effectively producing knowledge from massive
datasets remain challenging, especially for large enterprise
organizations comprised of multiple sub-organizations (each
of whom may have their own internal processes, formats, etc.).
Effective KDD therefore requires effective organizational and
technological practices to be in place. Specifically, knowledge
discovery processes are comprised of:

• Data collection, storage and organization practices
• Understanding and effective application of the modern

data analytic methods (including tools)
• Understanding of the problem domain and the nature,

structure and meaning of the underlying data

Fig. 1. Elements of the knowledge discovery process.

This paper outlines empirically derived principles for the es-
tablishment of effective architectures for knowledge discovery
over big data.

II. BACKGROUND

The principles described in this paper are derived from the
experiences and outcomes of various real world projects at
Oak Ridge National Laboratory (ORNL). ORNL collaborates
with several state and federal agencies on big data projects [2];
typically ORNL receives data, is expected to analyze this data
with domain experts, and to present the results via multiple
avenues (i.e., web interface, reports, etc). Often the types of
analysis to be performed are not explicitly defined and ORNL
must explore a variety of potential methods. On occasion,
ORNL is also asked to re-evaluate the current state of an
agencies’ internal big data architecture and strategy. In a
recent example, an agency approached ORNL to develop new
platforms for comprehensive and flexible data analysis. In ad-
dition to improving current analytic and business intelligence
functions, the initiatives objective was to modernize, simplify,
and streamline data collection, organization, and analysis of
nationally significant datasets. The agency’s existing methods
were considered costly (using many proprietary components),
somewhat antiquated (using older mainframe systems), and
unable to meet rapidly increasing demand. The rest of the
paper describes some key lessons learned in the development
of our own infrastructure and the development of infrastructure
for other agencies. We believe that the application of some



core principles can yield economical, comprehensive, flexible,
and secure solutions for the federal government’s big data
needs.

III. PRINCIPLES

Knowledge discovery, as any form of discovery, is serendip-
itous. Discovery of new knowledge might occur if the right
factors are present and aligned. Factors such as intuition,
acuteness, and probability of observation are difficult to con-
trol. Others, such as comprehensibility and organization of
data, its layout, availability of proper tools, and domain ex-
pertise are controllable. Our design principles are largely con-
cerned with maximizing the controllable factors and thereby
enabling researchers to explore, analyze, and interact with data
in as easy manner as possible.

A. Principle 1: Support a Variety of Analysis Methods

Knowledge discovery and modern data science employs
methods from distributed programming, data mining, statistical
analysis, machine learning, visualization, and human-computer
interaction (amongst others). These methods often employ
vastly different tools and techniques. For example, program-
mers may use Java to write distributed computation (i.e.,
Hadoop [3]), while statisticians may feel more comfortable
using R, SAS, etc. Many analysts will interact with SQL
during the lifetime of the application. Depending on the nature
of the analysis, different tools and expertise may be applied
at different times. Indeed, it has been our experience that it is
better to support a variety of tools rather than forcing users
to use a limited set of tools (that many may be unfamiliar
with, etc.). The architecture must therefore support a variety
of methods and analysis environments. In the following, we
detail some specific methods that are frequently used in our
projects.

1) Statistical Analysis: Statistical analysis is concerned
with both summarizing large datasets (i.e., average, min, etc.)
and in defining models for prediction. In our experience, such
analysis is often the first step in understanding the data. How-
ever most statistical tools (i.e., R, SAS) prefer to compute over
numerical and categorical data organized in a tabular, column-
oriented fashion. This often requires an extensive parsing
and organization step, especially for unstructured datasets. In
our current systems, we provide a variety of statistical tools,
including column-oriented relational databases (i.e., SQL), R,
and Python (i.e., NumPy, SciPy).

2) Data Mining and Machine Learning: Data mining is
concerned with automatically discovering useful models and
patterns in large datasets. Data mining consists of a large
set of statistical and programmatic techniques (i.e., clustering,
topic discovery, etc.). Machine learning employs both data
mining and statistical techniques (amongst others) with the
explicit goal of enabling machines to understand a set of
data. Techniques may be supervised (i.e. with human assis-
tance) or unsupervised. Often these techniques are used in
conjunction with statistical methods for elucidating complex
relationships (non-linear). For these tasks, we provide tools

including MADLib [4](in conjunction with EMC Greenplum
[5]) and the Hadoop Mahout library.

3) Visualization and Visual Analysis: Visual analytics is
an emerging field in which massive datasets are presented to
users in visually compelling ways with the hope that users will
be able to discover interesting relationships. Visual analytics
requires generating many visualizations (often interactively)
across many datasets. For our large visualization systems [6]
and web-based interactive systems [7], we employ a combina-
tion of high bandwidth file systems and pre-computed analytic
artifacts stored as visualization friendly objects such as JSON
representations.

B. Principle 2: One Size Does Not Fit All

Fig. 2. Knowledge Discovery Architecture Reference Implementation - KD
Fabric

In addition to providing a variety of data analysis methods,
a comprehensive KDD architecture must supply a means of
storing and processing the data at all stages of the pipeline
(from initial ingest to serving results). While a single storage
mechanism may suffice for small data volumes (i.e., local
filesystem), this is more problematic for large-scale data
analysis. Historically many organizations have relied on large
relational databases to accomplish this. However, we argue that
different types of analysis and the intermediate data structures
required by these (e.g. graphs for social network analysis) call
for specialized data management systems (Figure 2). Others
have also recognized that the time of the single style database
that fits all needs is gone [8].

1) Data Preparation and Batch Analytics: Data preparation
is the first step in the analytics pipeline (Figure 3). At this
stage, the data may contain errors, missing values, and is often
in an unusable format (i.e., a compressed binary format). In
our experience, Hadoop is an ideal tool for this stage. Hadoop
is a collection of Java-based open source software inspired by
Google’s BigTable [9], Google File System [10] and MapRe-
duce [11]. It includes a MapReduce component (for distributed
computation) and a scalable storage component, Hadoop File
System (HDFS), that can often replace costly SAN devices.
Hadoop sub-projects such as Hive and HBase offer additional
data management solutions for storing structured and semi-
structured data sets. In our systems we rely on HDFS as a



data landing platform and use Hive as our batch-oriented data
warehouse.

2) Processing Structured Data: Often the product of the
data preparation stage is a set of highly structured, relational
data. Although Hadoop can process such data (via Hive), we
have found distributed analytic databases [12] to be useful
for storing and analyzing such data. These databases (i.e.,
EMC Greenplum, HP Vertica [13]) are highly optimized for
large reads, aggregations, and statistical processing. They often
store data in a column-oriented fashion (vs row-oriented)
and distribute data over multiple machines to scale large
sizes. Because these systems employ SQL for querying, these
databases can also serve as backends for mainstream Business
Intelligence software (and thus simplifying visual interaction).

3) Processing Semi-structured Data: Not all data can be
easily modeled using relational techniques. For example,
hierarchical documents, graphs, and geospatial data. Such
data is extremely useful for social network analysis, natural
language processing, and semantic web analysis. We provide
HBase [14] and Cassandra [15] for hierarchical, key-value data
organization. For graph analysis, we employ both open-source
tools (e.g., Neo4j [16]) and proprietary hardware solutions
(e.g., Cray’s uRiKa platform [17]). Finally, for geospatial data
we employ open-source tools (e.g., PostGIS, GeoTools) and
proprietary tools (e.g., ESRI software).

Fig. 3. Transformation of data through specialized datastores.

C. Principle 3: Make Data Accessible

While the previous principles address data analysis and or-
ganization, the final principle addresses the end product (which
is often highly summarized data and insights). Specifically, it
has been our experience that making the results accessible and
easy to understand is paramount. Three approaches we have
used to accomplish this are using open, popular standards,
adoption of lightweight, web-oriented architectures, and ex-
posing results via a web-based API.

1) Use Open, Popular Standards: Presenting results to
users involves a complex set of software (databases, appli-
cation servers, and web interfaces). While this space has been
involving quickly, it has been our goal to use well supported
frameworks. For example employing open-source databases
(i.e., PostgreSQL), application servers (i.e., Java, Node.js), and
nimble Javascript frameworks (jQuery, etc.). Each of these
systems should communicate using standard protocols (i.e.,
REST, ODBC/JDBC, JSON).

2) Use Lightweight Architectures: Users demand rich, in-
teractive experiences when using web interfaces. While tradi-
tional methods of building web services suffice (i.e., J2EE),
our experience has been that new lightweight architectures
(i.e., Rails [18], Django [19], Node.js [20]) simplify the
construction of web applications. This, in turn, means that
we can create rich applications quickly and on demand. Since
many of these applications rely on open-source tools, we can
be confident that our applications will be able to run on a
variety of platforms.

3) Expose Results using an API: While downloading re-
sults in a document makes sense for many scenarios, users
now demand more flexible methods to interact with data
systems. Specifically users now expect rich web-enabled APIs
to download, interact, and visualize data. Actual processing
may happen on the server or in the client (via Javascript). By
exposing data via an API, it becomes easier for disparate sys-
tems to interact and enables users to create additional analysis
tools. In that regard, we were inspired by Yahoo’s BOSS Web
Services [21] as a good model of how to expose rich web
service APIs. Currently, we offer data feeds as OData [22]
compliant web services that represent either enumerable data
entities or results of the analytical post-processing. For each
instance of an API we provide interface documentation and
extensive examples. As part of this effort, we have learned that,
in order to foster rapid adoption of API based architecture, it
is paramount to offer extensive documentation describing both
API usage and the underlying datasets.

IV. IMPLEMENTATION

We have integrated these design three principles into our
own knowledge discovery infrastructure. We use this in-
frastructure to address various federal agency needs and to
serve as a reference implementation for agencies that may
want their own infrastructure. When ORNL executes work
for others, the data provided for us typically arrive in a
raw format (often from their own internal systems) that’s
not necessarily amenable to analysis (i.e., Cobol EBCDIC).
Depending on the data volume, the data is either transmitted
over the internet (using a secure channel) or via encrypted
NAS drives. We process this data using Hadoop and may
perform initial analysis using Hive. For data that requires
additional structured analysis (i.e., SQL), we place the data
into a distributed database. For other data formats, we use
our cloud computing platform (CloudStack [23]) to instantiate
necessary datastores such as Cassandra. Other cloud platform
also enables us to create virtual machines for ad-hoc analysis,



parsing, and visualization. In accordance to the principles
outlined, all datasets are exposed via RESTful APIs using the
OData standard.

V. FUTURE WORK

Although our infrastructure is used for real-world applica-
tions, we treat these systems as a research platform and expect
it to continuously evolve as the state-of-the-art advances. We
have developed our knowledge discovery principles during the
course of implementing these applications and standing up our
own systems. However, there is still much to do and many
open architectural questions. Some immediate ones include:

• How do we take advantage of cloud computing to in-
stantiate big data services in an optimal manner (i.e., to
reduce cost, maximize performance)?

• How do we automate and formalize the process of
instantiating the entire data analysis pipeline?

• How do we track provenance and handle security as the
data flows through the analysis pipeline?

• What additional storage and analysis systems do we
need? For example, do we need a Hadoop-for-graphs?
What is the role of in-memory systems?

We are currently examining these questions at ORNL while
continuing to further refine our existing systems.

VI. CONCLUSIONS

The big data movement has energized the software archi-
tecture world, and it has introduced complex, interesting ques-
tions for the community. As organizations continue to collect
more data at this scale, formalizing the process of big data
analysis will become paramount. In this paper, we introduced
several principles that we believe can guide organizations into
developing a sound, useful, and flexible data analysis pipeline.
These principles are a result of experience and lessons learned
from our own big data applications at ORNL. We have
instantiated these principles in our own infrastructure and have
found the principles to be useful guides.

REFERENCES

[1] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Ad-
vances in knowledge discovery and data mining, 1996.

[2] T. Kalil, “Fact sheet: Big data across the federal government,” Office of
Science and Technology Policy, Executive Office of the President, March
2012.

[3] T. White, Hadoop: The definitive guide. Yahoo Press, 2010.
[4] J. Hellerstein, C. Ré, F. Schoppmann, Z. Wang, E. Fratkin, A. Gorajek,

K. Ng, C. Welton, X. Feng, K. Li, et al., “The MADlib analytics library
or MAD skills, the SQL,” 2012.

[5] “Greenplum database community edition.” [Online]. Available:
http://www.greenplum.com/products/community-edition

[6] A. Sorokine, J. Daniel, and C. Liu, “Parallel visualization for GIS
applications,” in Proceedings GeoComputation, 2005.

[7] “d3 - JavaScript based visualization library.” [Online]. Available:
http://mbostock.github.com/d3/

[8] M. Stonebraker and U. Cetintemel, “One size fits all: An idea whose
time has come and gone,” in Data Engineering, 2005. ICDE 2005.
Proceedings. 21st International Conference on, 2005, pp. 2–11.

[9] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and
A. Byers, “Big data: The next frontier for innovation, competition and
productivity,” McKinsey Global Institute, May, 2011.

[10] S. Ghemawat, H. Gobioff, and S. Leung, “The google file system,” in
ACM SIGOPS Operating Systems Review, vol. 37, 2003, pp. 29–43.

[11] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[12] D. Abadi, S. Madden, and N. Hachem, “Column-Stores vs. Row-
Stores: how different are they really?” in Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, 2008, pp.
967–980.

[13] “Hp vertica database community edition.” [Online]. Available:
http://vertica.com/community

[14] “Apache hbase,” http://hbase.apache.org.
[15] A. Lakshman and P. Malik, “Cassandra: A decentralized structured

storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, Apr. 2010.

[16] “Neo4j graph database.” [Online]. Available: http://neo4j.org
[17] “Cray yarcdata urika appliance.” [Online]. Available:

http://www.cray.com/products/Urika.aspx
[18] “Ruby on rails,” http://rubyonrails.org.
[19] “Django,” http://www.djangoproject.com.
[20] “Node.js,” http://nodejs.org.
[21] “Yahoo! search build your own service (BOSS).” [Online]. Available:

http://developer.yahoo.com/search/boss/
[22] “Open data protocol.” [Online]. Available: http://www.odata.org
[23] “Cloudstack.” [Online]. Available: http://www.cloud.com


